Preparation and catalytic property of L-histidyl group-introduced, crosslinked poly(ethylene imine)s imprinted by a transition-state analogue of an esterolysis reaction

Katsutoshi Ohkubo*

Institute for Fundamental Organic Chemistry, Kyushu University, Fukuoka 812, Japan

and Yasuo Urata, Yuhji Honda and Yasuhiro Nakashima

Department of Applied Chemistry, Faculty of Engineering, Kumamoto University, Kumamoto 860, Japan

and Kohji Yoshinaga*

Department of Applied Chemistry, Kyushu Institute of Technology, Kitakyushu 804, Japan (Received 16 June 1994; revised 5 July 1994)

A crosslinked, L-histidyl group-introduced polymer catalyst, which was imprinted by a transition-state analogue of phenyl 1-benzyloxycarbonylamino-3-methylpentylphosphonate in the hydrolysis of p-nitrophenyl N-carbobenzoxy-L-leucinate, was prepared from poly(2-methyl-2-oxazoline). The catalyst enhanced the hydrolysis of the L-leucine ester, in comparison to the hydrolysis of the L-phenylalanine and L-alanine esters.

(Keywords: imprinted polymer; catalyst; molecular recognition)

In enzyme catalysis, it has generally been accepted that enzymes recognize and stabilize the transition state of a substrate molecule to make the activation barrier lower¹. The concept of an 'antibody catalyst', developed by Pollack et al.2, based on antibody formation against a hapten of a transition-state analogue, has received great attention as a strategy for constructing 'tailor-made enzyme-like catalysts'. From a practical point of view, however, most antibody catalysts do not seem to be commercially applicable because of complex purification processes and high cost. Hence, if it is possible to construct a polymer catalyst through molecular imprinting against a template molecule, especially a transition-state analogue, in order to make a catalytically active centre, the enzyme-like polymer catalyst, i.e. plastic catalyst, may be a promising approach. In this respect, we have already reported an appreciably efficient esterolytic catalysis of crosslinked poly(vinyl imidazole), imprinted by a transition-state analogue of methyl p-nitrobenzylphosphonate, in the hydrolysis of p-nitrophenyl acetate³. However, it seems to be difficult to construct the elaborate template polymer catalysts by radical polymerization of vinyl monomers.

This paper describes the preparation and the homogeneous catalytic activity of N-carbobenzoxy-L-hystidyl group-introduced, crosslinked poly(ethylene imine) imprinted by a transition-state analogue, phenyl 1-benzyloxycarbonylamino-3-methylpentylphosphonate (1), for the hydrolysis of a specific substrate, p-nitrophenyl N-carbobenzoxy-L-leucinate (Z-L-Leu-PNP) (2). The water-

Transition state analogue (1)

Substrate (2)

The template compound 1 was synthesized by stirring a mixture of 13.2 mmol triphenylphosphite, 19.8 mmol 3-methyl-1-butanal, 13.2 mmol benzyl carbamate and acetic acid (2 ml) at 80°C for 1 h. Recrystallization from CHCl₃-MeOH (1:1 by volume) gave 2.9 g diphenyl 1-(benzyloxycarbonylamino)-3-methylpentylphosphonate. Hydrolysis of the phosphonate (4.6 mmol) with 0.4 N NaOH (4.6 mmol) at room temperature for 2 days and acidification with 12 N HCl, followed by separation using column chromatography with chloroform-methanol gave 1.0 g of 1.

The polymer catalyst was prepared by a process shown in Scheme I. The cationic polymerization of 2-methyl-2-oxazoline (47 mmol) using methyl p-toluenesulfonate (0.94 mmol) gave 3.8 g poly(2-methyl-2-oxazoline), with number average molecular weight of 6500. The reaction of the polyoxazoline (2.8 g) with 1 N NaOH caused partial hydrolysis of the polymer to eliminate the acetyl group of 12 mol% in 3, and successive ethylation with LiAlH₄ (30 mmol) in 1,2-dichloroethane gave 4 (1.8 g). A catalytically active centre of the imidazole group was introduced by the condensation of N-carbobenzoxy-L-

0032-3861/94/24/5372-03

© 1994 Butterworth-Heinemann Ltd

soluble catalyst has been derived from poly(2-methyl-2-oxazoline) to control frame polymer chain length and hydrophobicity.

^{*} To whom correspondence should be addressed

Scheme 1 Preparation of Im-PIm and C₁₀-Im-PIm

histidine (Z-L-His) (0.5 mmol) with 4 (0.2 g) employing N,N'-dicyclohexylcarbodiimide (0.25 mmol) in dimethylformamide (DMF). The resulting polymer 5 was composed of 0.63 parts of N-acetylethyleneimine, 0.09 parts of N-(Z-L-His)ethyleneimine and 0.28 parts of N-ethylethyleneimine, estimated by 1 H n.m.r. analysis. The imprinting of the transition-state analogue (1) and simultaneous crosslinking were carried out by stirring a mixture of 170 mg 5, 0.17 mmol 1, equimolar CoCl₂·6H₂O and 1,6-dibromohexane in DMF (2 ml) at 45°C for 3 days. The crosslinked polymer was purified by precipitation with hexane from the DMF solution. Alkylation of the resulting polymer was conducted by heating with 1-bromodecane (0.095 mmol) in DMF (2 ml). The extraction of Co²⁺ and 1 from the crosslinked polymers with bipyridine in methanol at room temperature gave Im-PIm and C₁₀-Im-PIm catalyst shown in Scheme 1.

Hydrolyses of p-nitrophenyl amino acid esters were carried out at 25°C in pH 7.15 CH₃CN-Tris buffer

Table 1 Kinetic parameters for Im-PIm and C₁₀-Im-PIm-catalysed hydrolysis of p-nitrophenyl esters

	Im-PIm			C ₁₀ -Im-PIm		
	Phe	Leu	Ala	Phe	Leu	Ala
10 ³ k _{obs} (min ⁻¹)	36.9	6.9	7.2	22.2	10.4	11.0
$10^3 k_{\rm uncat} (\rm min^{-1})$	22.2	1.2	1.8	22.2	1.2	1.8
$k_{\rm obs}/k_{\rm uncat}$	1.7	5.8	4.0	1.0	8.7	6.1

^a[Z-L-His] in Im-PIm and in C_{10} -Im-PIm= 8.0×10^{-4} mol dm⁻³; [substrate]= 2.0×10^{-5} mol dm⁻³ in CH₂CN-H₂O (1:9 by volume) in Tris-HCl buffer, including 0.5 mol dm⁻³ NaCl at 298 K, pH 7.15. Phe, Leu and Ala represent Z-L-Phe-PNP, Z-L-Leu-PNP and Z-L-Ala-PNP, respectively

solution (1:9 by volume). The reaction was followed spectrophotometrically by monitoring the absorption of produced p-nitrophenolate anion at 400 nm. Catalytic activity was estimated by apparent pseudo-first-order rate constant (k_{obs}) .

Im-PIm enhanced the catalytic hydrolysis of Z-L-Leu-PNP more than those of p-nitrophenyl Z-L-alanate (Z-L-Ala-PNP) and Z-L-phenylalanate (Z-L-Phe-PNP), as shown by the ratio of k_{obs} to the rate constant (k_{uncat}) for the uncatalysed reaction in Table 1. The rate enhancement in the reaction of Z-L-Leu-PNP by Im-PIm was five times larger than that of Z-L-Phe-PNP. These results show that the cavity formed by imprinting an analogue of 1 in Im-PIm has specificity for subtrate recognition in the hydrolysis of the esters. C₁₀-Im-PIm, prepared by alkylation of Im-PIm, effectively promoted the reaction of Z-L-Leu-PNP about nine times faster than the uncatalysed system. Presumably, the hydrophobicity increased by the C_{10} part in the catalyst made the substrate inclusion fast in the 10 vol% MeCN- H_2O solution. Interestingly, the alkylated catalyst did not exhibit catalytic enhancement for hydrolysis of Z-L-Phe-PNP. Probably, steric hindrance of the decyl group protects the catalytic site from the approaching bulky Z-L-Phe-PNP substrate. However, C_{10} -Im-PIm affected the reaction of Z-L-Ala-PNP as well as that of Z-L-Leu-PNP. Therefore, the cavity, imprinted by a transition-state analogue in the hydrolysis of Z-L-Leu-PNP, can recognize the difference between phenyl and isopropyl groups of the substrate, but cannot effectively differentiate Z-L-Ala-PNP from Z-L-Leu-PNP. Probably, the flexibility of the polymer frame of the catalyst led to incomplete substrate specificity.

Research to improve the catalytic activity and substrate specificity by changing the frameworks of Im-PIm and C_{10} -Im-PIm is now in progress.

References

- Pauling, L. Am. Sci. 1948, 36, 51
- Pollack, S. J., Jacons, J. W. and Schult, P. G. Science 1986, 234, 1570 Ohkubo, K., Urata, T., Hirota, S., Honda, Y. and Sagawa, T. J. Mol. Catal. 1994, 87, L21